

SYDNEY HARBOUR TUNNEL: 6 MONTHLY COMPLIANCE EMISSIONS MONITORING

VENTIA PTY LTD

Project ID: 14375

Release: R_1

Date: 23/11/2022

Unit 7, 142 Tennyson Memorial Avenue, Tennyson, Queensland, 4105 Unit 17, 538 Gardeners Road, Alexandria, NSW 2015

DOCUMENT CONTROL PAGE

Project Title: Sydney Harbour Tunnel: 6 Monthly Compliance Emissions Monitoring

Project Reference ID: 14375

Report Prepared by:

Assured Environmental Unit 7, 142 Tennyson Memorial Avenue Tennyson, Qld. 4105 ABN: 87 604 851 078

Report Prepared for:

Ventia PTY LTD 80 Pacific Hwy, North Sydney NSW 2060

Knishe

Report Author: Rama Tirnaty

 $\mathcal{V}: I(I)$

Report Reviewer: David Arbuckle

Table 1: History of Revisions

Revision	Date	lssued to	Changes
R_O	19/11/2022	Jason Quarta	Initial report release.
R_1	24/11/2022	Jason Quarta	Updated EPL to latest version

ACCREDITED FOR COMPLIANCE TO ISO/IEC 17025 (TESTING)

The results of the tests, calibrations and/or measurements included in this document is traceable to Australian/national standards.

Accreditation number: 19703

DISCLAIMER

Assured Environmental acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and Assured Environmental. Assured Environmental is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, Assured Environmental does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to Assured Environmental for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of Assured Environmental.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Assured Environmental is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

EXECUTIVE SUMMARY

Assured Environmental performed 6 monthly compliance air emissions monitoring for Ventia Pty Ltd at Sydney Harbour Tunnel Ventilation Facility on 27th and 28th of October 2022, in accordance with the New South Wales Environmental Protection Licence (Licence number – 4062), Monitoring was performed at two locations as listed below.

The relevant limits taken from condition L2.2 of EPL 4062 (licence version date 1-Sep-2022) are stated in the tables below.

All test results are compliant.

Parameter	Unit of		Test		Test	Lice e
	measure		result PM		result PM	e lim
Site	-		Sydney Harbour Tunnel		Sydney Harbour Tunnel	-
Source	-		Northbound		Southbound	-
Date	dd/mm/yyy y		27/10/2022		28/10/2022	-
Time start	hh:mm		13:49		4:54	-
Time end	hh:mm		16:56		8:01	-
Exhaust air velocity	m/sec		21.43		27.84	-
Exhaust air temperature	°C		26.1		22.1	-
Exhaust air absolute pressure	mbar		997		995	-
Exhaust air moisture content	% v/v		1.20		1.50	-
Exhaust air density	kg/Nm³		1.29		1.29	-
Exhaust air volume flow	Nm³/sec- dry		112		147	-
Nitrogen Oxides (NOx as NO2)	mg/Nm³		0.982		0.264	25
- Emission rate	g/sec		0.110		0.0389	-
Carbon Monoxide (CO)	mg/Nm ³		1.88		0.864	40
- Emission rate	g/sec		0.212		0.127	-
Total Particulate Matter - PM	mg/Nm ³		0.229		0.133	1.1 [1]
- Emission rate	g/sec		0.0257		0.0196	-
VOCs - detectable species						
Formaldehyde	mg∕Nm³		0.0115	<	0.00488	-
Formaldehyde emission rate	g/sec		0.00119	<	0.000664	-
Acetaldehyde	mg/Nm ³		0.0046	<	0.00488	-
Acetaldehyde emission rate	g/sec		0.000478	<	0.000664	-
TVOC (as n-propane)	mg/Nm ³	<	0.222	<	0.0441	4
TVOC (as n-propane) emission rate	g/sec	<	0.0230	<	0.00598	-
Benzene	mg/Nm³		0.00697	<	0.00174	-
Benzene emission rate	g/sec		0.000724	<	0.000236	-
Toluene	mg∕Nm³		0.0535		0.0206	-
Toluene emission rate	g/sec		0.00555		0.00279	-
Ethyl Benzene	mg/Nm ³		0.00474		0.00284	
Ethyl Benzene emission rate	g/min		0.000492		0.000386	
m+p-Xylene	mg/Nm ³		0.0332		0.0142	-
m+p-Xylene emission rate	g/sec		0.00344		0.00193	-
o-Xylene	mg/Nm ³		0.00948		0.00474	-
o-Xylene emission rate	g/sec		0.000983		0.000643	-
1,3-butandiene	mg/Nm ³	<	0.00121	<	0.00121	-
1,3-butandiene emission rate	g/sec	<	0.000125	<	0.000164	_

Table 2: Test summary results for Ventilation Outlet Sydney Harbour Tunnel

[1] – Special averaging time 1 means: 1 hour, or the minimum sampling period specified in the relevant test method, whichever is the greater.

TABLE OF CONTENTS

3
5
7
7
8 8
9
9 oound 9
12
13
15
16
16 17 18 19 19 19 19
•

LIST OF TABLES

TABLE 1: HISTORY OF REVISIONS	ll
Table 2: Test summary results for Ventilation Outlet Sydney Harbour Tunnel	3
Table 3: Abbreviations & Definitions	5
Table 4: Test scope	7
Table 5: Uncertainty budget	8
TABLE 6: SOURCE DESCRIPTION – VENTILATION OUTLET SYDNEY HARBOUR TUNNEL	11
Table 7: Sampling data QA/QC checklist	12
Table 8: Laboratory data QA/QC checklist	12
Table 9: Site Sample Data Sheet Summary	13
Table 10: Speciated VOC's Data Sheet Summary	14
TABLE 11: CONDITION A2.1 OF INFRASTRUCTURE APPROVAL	16

LIST OF FIGURES

FIGURE 1: INSIDE VENTILATION FACILITY (LEFT) & SAMPLING PORT (RIGHT)	9
Figure 2: Sydney Harbour Tunnel Stack location	10

GLOSSARY

Table 3: Abbreviations & Definitions

Abbreviation	Definition
%v/v	percent volume to volume ratio
<	The analytes tested for was not detected; the value stated is the reportable limit of detection
AE	Assured Environmental
Am ³	Gas volume in cubic metres at measured conditions
AS	Australian Standard
BH	Back half of sample train (filter holder and impingers) (referred to during sample recovery)
CARB	California Air Resources Board methods
CEMS	Continuous Emission Monitoring System
CO	Carbon monoxide
CO ₂	Carbon dioxide
COC	Chain of custody
CSA	Cross sectional area
dd/mm/yyyy	day - month – year
DECC	Department of Environment & Climate Change
DP	Discharge point
dscm	dry standard cubic meters
ELS	EnviroLab Services
EPA	Environmental Protection Agency
EPL	Environmental Protection Licence
EWP	Elevated work platform
FH	Front half of sample train (probe and filter holder) (referred to during sample recovery)
g	Grams
g/g mole	gram per gram – mole
H ₂ O	Water
H2S	Hydrogen sulphide
H2SO3	Sulphuric acid
hh:mm	hours: minutes
ISO	International Standards Organisation
ISO17025	ISO for the General requirements for the competence of testing and calibration laboratories
kg	Kilograms
m	Metres
m/sec	metres per second
m ³	actual gas volume in cubic metres as measured
mbar	Millibars
MDL	Method detection limit
mg	Milligrams (10 ⁻³ grams)
min	Minute
mL	Millilitres
mm	Millimetres
mmH ₂ O	Millimetres of water
Mole	SI unit that measures the amount of substance
MRU	Gas analyser brand
N/A	Not applicable
NATA	National Association of Testing Authorities
NATO	North Atlantic Treaty Organisation
ng	Nanograms (10 ⁻⁹ grams)
NH ₃	Ammonia
NIOSH	National institute for occupational safety and health (USA)
NM Nm ³	Non-methane
Nm ³	Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa)
NMI	National Measurement Institute
NO NO2	Nitrogen monoxide
	Nitrogen dioxide
NPI	National Pollutant Inventory
NR	Not required on this occasion
NSW	New South Wales
02	Oxygen

Abbreviation	Definition
°C	Degrees Celsius
OH&S	Occupational Health & Safety
OM	Other Method
OSHA	Occupational Safety and Health Act
PAH	Polycyclic Aromatic Hydrocarbon
PM	Particulate matter (total)
PM10	Particles with a diameter of 10 micrometres or less
PM2.5	Particles with a diameter of 2.5 micrometres or less
Ppb	Parts per billion
Ppm	Parts per million
PQL	Practical quantitation limit
PSD	Particle size distribution
Q1	Quarter 1
Q2	Quarter 2
Q3	Quarter 3
Q4	Quarter 4
QA	Quality assurance
QC	Quality control
RMS	Root mean square
SCAQMD	South Coast Air Quality Management District
Sec	Second
SI	Standards international
Sm ³	Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3
	kPa) and corrected to a standardised value.
SO ₂	Sulphur dioxide
SO3	Sulphur trioxide
SSI	State Significant Infrastructure
STP	Standard temperature and pressure (0°C and 101.3 kPa)
TM	Test Method
ТО	USEPA air toxics method
TWA	Time weighted average
USEPA	United States Environmental Protection Authority
UTM	Universal Transverse Mercator
VOC	Volatile organic compound

Jae

1 INTRODUCTION

Assured Environmental (AE) was appointed by Ventia Pty Ltd to conduct the 6 monthly compliance monitoring as required Environmental Protection Licence (EPL) number 4062, on the Ventilation Stack Outlet Southbound & Ventilation Stack Outlet Northbound release points.

The following measurements were performed:

- Solid Particles
- Carbon monoxide
- Oxides of Nitrogen
- VOC's & TVOC's

2 METHODOLOGY

The methodology for this project was selected based on the requirements of the Licence and with reference to the '*Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales*' document. The methodology is listed in Table 4 below along with AE's NATA accreditation in relation to the work.

PARAMETERS - CEMS	NSW EPA TM	Reference Test Method	NATA (ISO:17025)	Limit mg/m ³
Solid particles (total)	TM-15	AS4323.2	Yes	1.1
Carbon monoxide (CO)	TM-32	USEPA Method 10	Yes	40
Nitrogen oxides (NOx)	TM-11	USEPA Method 7E	Yes	25
Speciated VOCs ^b	TM-34	USEPA Method 18 ^c	Yes	n/a
Total VOCs ^d	TM-34	USEPA Method 25A	Yes	4
Stack gas velocity	TM-2	USEPA Method 2	Yes	n/a
Volumetric flow rate	TM-2	USEPA Method 2	Yes	n/a
Moisture	TM-22	USEPA Method 4	Yes	n/a
Stack gas temperature	TM-22	USEPA Method 2	Yes	n/a

Table 4: Test scope^a

^a Refer to ADDENDUM for brief summaries of these methods.

^b Single Summa canister sample for speciated Volatile Organic Compounds must include, but is not limited to, Benzene, Toluene, Xylenes, 1,3-Butadiene, Formaldehyde and Acetaldehyde. Does not include a spike recovery study.

^c Single samples collected using Summa canisters over a period of 1-hour during peak traffic period. Formaldehyde and Acetaldehyde collected separately using a suitable sorbent tube at the same time as the Summa canister/s.

^d Volatile organic compounds as n-propane equivalent.

2.1 Analytical laboratories

To achieve a lower limit of detection, filters and sample rinses were analysed using a 6-point (0.001mg) balance. Sample weighing was performed inhouse by Assured Environmental (NATA ID. 19703).

2.2 Measurement uncertainty

There is an uncertainty associated with any scientific measurement, including stack emissions monitoring. The measurement uncertainty can be controlled with adherence to the reference methodology which includes utilising appropriate calibration standards with corresponding acceptable uncertainty reports.

Many source sampling methods do not outline exact procedures for establishing direct measurement uncertainty. In the absence of a defined procedure, the uncertainty budgets presented are based on estimations using ISO-GUM method.

Each individual source and test may have a unique associated uncertainty, due largely to the stack sample location in relation to the positioning requirements of AS4323.1 and whether it meets the ideal or non-ideal descriptions.

Sample location	Parameter	Reference method	Uncertainty	Coverage factor	Confidence coefficient
			± %		%
	Velocity	USEPA Method 2	10	2	95
	Temperature	USEPA Method 2	5	2	95
Ventilation	Moisture content	USEPA Method 4	5	2	95
Outlets Sydney	Solid Particles	AS4323.2	50	2	95
Harbour Tunnel	Formaldehyde & Acetaldehyde	USEPA Method 18	15	2	95
	VOC's	USEPA Method 18	15	2	95
	CO & NOx	USEPA Method 7E & 10C	10	2	95

Table 5: Uncertainty budget

3 PROCESS DESCRIPTION

The Sydney Harbour Tunnel is a twin-tube road tunnel in Sydney, Australia. The tunnel provides a vehicular crossing of Sydney Harbour to alleviate congestion on the Sydney Harbour Bridge. It is one of two tunnels under the harbour, the other being a set of rail tunnels for the Sydney Metro. The Sydney Harbour Tunnel section is vented through a ventilation facility known as the Ventilation stack outlets southbound and northbound.

3.1 Sampling Location

Access to the sampling locations is via ladders, the sample access points are located approximately 20 meters above ground level.

3.1.1 Sydney Harbour Tunnel Ventilation Facility – Ventilation Stack Outlet Southbound & Northbound

The sample points at the Ventilation Stack Outlet Southbound & Northbound contain five 55mm BSP sampling ports positioned along one face of the duct shown in Figure 1. Due to these small sampling ports, it is not possible to insert standard sampling probes.

Figure 1: Inside ventilation facility (left) & sampling port (right)^e

^e Existing Northbound and Southbound sampling ports are 55mm diameter and the recommended requirement of sampling port for isokinetic sampling is 4" or 100mm.

The sampling position was evaluated in accordance with AS 4323.1 to determine the total number sampling points, based on the cross-sectional area and effective distance from disturbances. It is noted that given the design of the structure and required exhaust duct size, meeting each requirement of the method is not possible. The assessment is summarised in the following tables and figures.

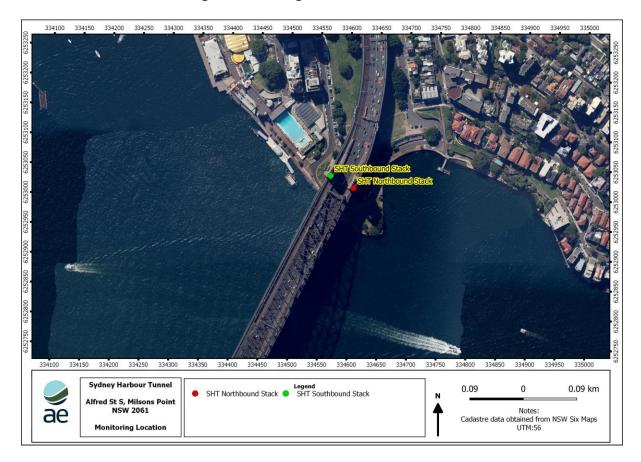


Figure 2: Sydney Harbour Tunnel Stack location

A54323.1	Sample location	Northbound	Southbound
	Description	Tunnel Ventilation Facility	Tunnel Ventilatior Facility
	Stack coordinates	UTM 56s:	UTM 56s:
	m	334615.09 m E	334583.00 m E
	Easting	6253047.38 m S	6253072.94 m S
	Stack Exit point from ground (m)	~40	~40
	Stack Shape	RECTANGULAR	RECTANGULAR
	Ideal Sampling Plane Assessment		
	Stack Diameter (m)	2.31	2.31
	Stack Cross Section Area (m ²)	5.91	5.91
	Distance to upstream disturbance (m) (from disturbance)	1.87	1.87
	Upstream Diameters (D)	0.81	0.81
	Distance to downstream disturbance (m) (from disturbance)	5.00	5.00
	Downstream diameters (D)	2.16	2.16
4.2.2 Table 1	Meets Requirements AS4323.1 Table 1	No	No
	Non-deal Sampling Plane Assessment		
	Assessment required?	No	No
	Total traverse point factors	1.27	1.27
	Non-conforming Sampling Plane Assessment		
4.2.2(a)	Gas flow in same direction	Yes	Yes
4.2.2(b)	Gas flow steady & evenly distributed (cyclonic or swirl <15°)	Yes	Yes
4.2.2(c)	Temperature difference between points <10%, and each point <10% of average	Yes	Yes
()) (d)	Ratio of highest to lowest differential pressure &	2.76	1.90
4.2.2(d)	ratio highest to lowest velocity	1.66	1.38
4.2.2(e)	Minimum differential pressure	20.0	43.5
	Gas temperature above dewpoint	Yes	Yes
	Sampling Plane Type		
4.2.2, 4.2.3, 4.2.4	Sampling plane type	Non-conforming	Non-conforming
	Alternative sampling plane available?	No	No
	Number of Sample Points Adopted		
	Port size (mm)	55	55
	Port Thread Type	BSP	BSP
	Number of traverses	5	5
	Number of points per traverse	5	5
	Total number of traverse points	25	25

Table 6: Source description – Ventilation Outlet Sydney Harbour Tunnel

4 QUALITY ASSURANCE & QUALITY CONTROL (QA/QC)

Assured Environmental operates within a quality system based upon the requirements of ISO17025. Our quality system defines specific procedures and methodologies to ensure any project undertaken by Assured Environmental is conducted with the highest level of quality given the specific confines of each project. The overall objective of our QA/QC procedures is to representatively sample and accurately analyse components in the gas streams and therefore report valid measurements of emission concentrations.

To ensure representativeness of field work, our quality procedures target:

- 1. Correct sampling locations
- 2. Sample time
- 3. Frequency of samples and
- 4. Method selection & adherence

To ensure <u>representativeness of lab work</u>, our quality procedures target:

- 1. Sample preservation
- 2. Chain of custody (COC)
- 3. Sample preparation and
- 4. Analytical techniques

Assured Environmental maintains strict quality assurance throughout all its sampling programs, covering on-site 'field work' and the analytical phase of our projects. Our QA program covers the calibration of all sampling and analytical apparatus where applicable and the use of spikes, replicate sample and reference standards. The test methodologies used for this project are outlined in the methods section of this document. Field test data has been recorded and calculated using direct entry into Microsoft Excel spreadsheets following the procedures of the appropriate test methods. Determination of emission concentrations has been performed using the same Microsoft Excel spreadsheets which are partially supplied as an attachment to this report. More detailed information can be supplied upon request.

QA/QC checks for this project will use validation techniques and criteria appropriate to the type of data and the purpose of the measurement to approve the test report. Records of all data will be maintained. Complete chain of custody (COC) procedures has been followed to document the entire custodial history of each sample. The COC forms also served as a laboratory sheet detailing sample ID and analysis requirements.

Table 7: Sampling data	QA/QC checklist
------------------------	-----------------

Sampling Data QA/QC Checklist	Comment	
Use of appropriate test methods	Yes	
'Normal' operation of the process being tested	Yes – as instructed by client	
Use of properly operating and calibrated test equipment	Yes	
Use of high purity reagents	Yes	
Performance of leak checks post sample (at least)	Yes	

Table 8: Laboratory data QA/QC checklist

Laboratory Data QA/QC Checklist	Comment
Use of appropriate analytical methods	Yes
Use of properly operating and calibrated analytical equipment	Yes
Precision and accuracy comparable to that achieved in similar projects	Yes
Accurate reporting	Yes

5 **RESULTS**

The results of the measurements are presented below along with other pertinent data associated with the tests.

Table 9: Site Sample Data Sheet Summary	
---	--

Source Data			Sydney Harbour Tunnel	Sydney Harbour Tunnel
Source Data Client			Ventia Pty Ltd	Ventia Pty Ltd
Site			Sydney Harbour Tunnel	Sydney Harbour Tunnel
Sample Point			Northbound	Southbound
Reference Method			AS4323.2 - ISOKINETIC	AS4323.2 - ISOKINETIC
Test Parameters Process conditions			PM Exhaust Fan 15 Forward	PM Exhaust Fan 23 Forward
Historical Data & Hardware Information - Manual Sample			Exhaust Fan 15 Forward	Exhaust Pan 23 Forward
Run Start Date		dd-mm-yyyy	27/10/2022	28/10/2022
Project ID			14375	14375
Run ID			-1	-4
Run Start Time	Ti Tf	hh:mm	13:49	4:54
Run Stop Time Console Serial Number		hh:mm	16:56 SN935	8:01 SN935
Meter Calibration Factor	(Y)		1.079	1.079
Orifice Coefficient		(DH@)	42.46	42.46
Pitot Tube Coefficient	(Cp)		0.84	0.84
Actual Nozzle Diameter	(Dna)	mm	4.62	3.25
Stack Test Data Initial Meter Volume	(Vm)i	m3	0.0000	0.0000
Final Meter Volume	(Vm)f	m3	3.4150	2.5670
Actual Sampling Time	(Q)	minutes	187.5	187.5
Average Meter Temperature	(tm)avg	oC	33.16	31.28
Average Stack Temperature	(ts)avg	oC	26.08	22.12
Barometric Pressure	(Pb)	mb	998	999
Stack Static Pressure	(Pstatic)	mm H2O	-18.70	-44.30
Absolute Stack Pressure Sample Volumes	(Ps)	mb	997	995
Actual Meter Volumes	(Vm)	m3	3.6848	2.7698
Standard Meter Volume	(Vm)std	Nm3	3.2483	2.4553
Moisture Content Data				
Water vapour concentration	(Bws(calc))	%	1.20	1.50
Stack Gas Density Analysis Data Carbon Dioxide Percentage	(%CO2)	%	< 0.10	< 0.10
Oxygen Percentage	(%02)	%	20.90	20.90
Carbon Monoxide Percentage	(%CO)	%	0.00	0.00
Nitrogen Percentage	(%N2)	%	79.07	79.07
Dry Gas Molecular Weight	(Md)	kg/Nm3	1.29	1.29
Dry Gas Molecular Weight	(Md)	g/g-mole	28.84	28.84
Wet Stack Gas Molecular Weight Volumetric Flow Rate Data (at Sample Plane)	(Ms)	g/g-mole	28.71	28.68
Average Stack Gas Velocity	(vs)	m/sec	21.43	27.84
Equivalent Stack Diameter	Ds	m	2.31	2.31
Stack Cross-Sectional Area	(As)	m2	5.914	5.914
Upstream distance (from disturbance)	В	m	1.87	1.87
Downstream distance (from disturbance)	A	m m 2 (min	5.00	5.00
Actual Stack Flow Rate Wet Standard Stack Flow Rate	(Qaw) (Qsw)	m3/min Nm3/min-wet	7,602 6,827	9,877 8,973
Dry Standard Stack Flow Rate	(Qsw) (Qsd)	Nm3/min-dry	6,745	8,839
Percent of Isokinetic Rate	(1)	%	90.7	105.6
Particulate Matter (PM) Concentration				
Total Mass of Particulates	(mn)	g	0.00074	0.00033
Stack PM Concentration Particulate Emission Rate	(cs) (E)	mg/Nm3	0.229 1.5417	0.133 1.1789
Instrumental Analyser - Historical Data & Hardware Information	(E)	g/min	1.5417	1.1769
Analyser serial number, make & model		value	AE006 Trailer 1	AE006 Trailer 1
Analyser Run Start Time	Ti	hh:mm	11:12	5:14
Analyser Run Stop Time	Tf	hh:mm	17:50	8:19
Analyser Total Sampling Time	(Q)	hh:min	6:38	3:05
Instrumental Analyser Raw Data Averages Oxides of Nitrogen	(NOx)	ppm	0.478	0.129
Carbon Monoxide	(NOX) (CO)	ppm	1.507	0.691
Average Oxides of Nitrogen (USEPA Method 7E - instrumental analyser)				
Nitrogen Oxides (NOx as NO2)	(Conc)	mg/Nm3	0.982	0.26
Nitrogen Oxides (NOx as NO2)	(E)	g/min	6.625	2.3
Average Carbon Monoxide (USEPA Method 10 - instrumental analyser) Carbon Monoxide (CO)	(Cono)	mg/Nm2	1.88	0.864
Carbon Monoxide (CO) Carbon Monoxide (CO)	(Conc) (E)	mg/Nm3 g/min	12.7	7.63
OTHER ANALYTES (VOC's ,Acetaldehyde& Formaldehyde)		9		
Formaldehyde	(Conc)	mg/Nm3	0.0115	< 0.0049
Formaldehyde emission rate	(E)	g/min	0.0716	< 0.0398
Acetaldehyde	(Conc)	mg/Nm3	0.0046	< 0.0049
Acetaldehyde emission rate TVOC (as propane)	(E) (Conc)	g/min mg/Nm3	0.0287 < 0.2219	< 0.0398 < 0.0441
TVOC (as propane) TVOC (as propane) emission rate	(E)		< 1.381	< 0.3588
Benzene	(Conc)	mg/Nm3	0.0070	< 0.0017
Benzene emission rate	(E)	g/min	0.0434	< 0.0142
Toluene	(Conc)	mg/Nm3	0.0535	0.0206
Toluene emission rate	(E)	g/min	0.3329	0.1673
Ethyl Benzene Ethyl Benzene emission rate	(Conc) (E)	mg/Nm3 g/min	0.0047 0.0295	0.0028
m&p xylene	(⊂) (Conc)	mg/Nm3	0.0332	0.0142
m&p xylene emission rate	(E)	g/min	0.2065	0.1157
o xylene	(Conc)	mg/Nm3	0.0095	0.0047
o xylene emission rate	(E)	g/min	0.0590	0.0386
1,3-Butadiene	(Conc) (E)		< 0.0012 < 0.0075	< 0.0012 < 0.0098
1,3-Butadiene emission rate				

Speciated VOC's Un	its <u>M</u> e	ethod	Northbound	Southbound
Propylene mg	/m3 TO	015	9.844	3.938
Dichlorodifluoromethane mg	/m3 TO)15 <	2.699 <	< 2.699
Chloromethane mg	/m3 TO	015	1.127 <	× 1.127
1,2-Dichlorotetrafluoroethane mg	/m3 TO	015 <	3.815 <	< 3.815
Vinyl chloride mg	/m3 TO	015 <	1.395 <	< 1.395
1,3-Butadiene mg	/m3 TO	>15 <	1.207 <	< 1.207
Bromomethane mg				< 2.119
Chloroethane mg			1.440 <	< 1.440
Ethanol mg			156.3	20.57
Acrolein mg				: 12.51
	/m3 TO			< 3.066
Acetone mg				< 12.96
Isopropyl Alcohol mg				< 13.42
1,1-Dichloroethene mg				< 2.164
1,1,2-Trichlorotrifluoroethane mg				< 4.182
Methylene chloride(Dichloromethane) mg				< 18.96
Carbon Disulfide mg				< 17.00
trans-1,2-dichloroethene mg				< 2.164
MTBE mg.				< 1.968
1,1- Dichloroethane mg				< 2.209
Vinyl Acetate mg				1.922
MEK mg				< 16.10
Hexane mg				< 2.693
cis-1,2-Dichloroethene mg				< 2.164
Ethyl Acetate mg.				< 1.967
Chloroform mg.				< 2.665
Tetrahydrofuran mg.				< 1.610
1,1,1-Trichloroethane mg.				2.978
1,2-Dichloroethane mg				< 2.209
Benzene mg				< 1.744
Carbon tetrachloride mg				3.433
Cyclohexane mg				< 1.879
Heptane mg				2.237
Trichloroethene mg				2.933
1,2-Dichloropropane mg				< 2.522
1,4-Dioxane mg.				< 1.967
Bromodichloromethane mg				3.656
Methyl Methacrylate mg				2.235
MIBK mg				< 22.36
cis-1,3-Dichloropropene mg				< 2.477
trans-1,3-Dichloropropene mg Toluene mg				2.477
3			53.47	20.57
1,1,2-Trichloroethane mg				< 2.978 < 2.236
Methyl Butyl Ketone mg				
Dibromochloromethane mg				4.649
Tetrachloroethene mg				< 3.702
1,2-Dibromoethane mg				< 4.193 < 2.513
Chlorobenzene mg			2.513 < 4.740	2.844
Ethylbenzene mg m-& p-Xylene mg			33.18	2.844 14.22
Styrene mg				2.325
o-Xylene mg			9.479	4.740
Bromoform mg				< 5.641
1,1,2,2-Tetrachloroethane mg				< 3.747
4-ethyl toluene mg				< 2.683
1,3,5-Trimethylbenzene mg				< 2.683
1,2,4-Trimethylbenzene mg			10.73	4.293
1,3-Dichlorobenzene mg				< 3.281
Benzyl chloride mg				< 2.825
1,4-Dichlorobenzene mg				< 3.281
1,2-Dichlorobenzene mg				< 3.281
1,2-Dichlorobenzene mg				4.050
Naphthalene mg				< 2.861
	niis IU	/10 <	2.001	2.001
		15 -	5 821	5 821
Hexachloro-1,3-butadiene mg TOTAL VOC as n-propane mg	/m3 TO			5.821 0.044

ãe

6 CONCULSION

Assured Environmental performed air emissions monitoring for Ventia Pty Ltd on the 27th and 28th of October 2022, in accordance with the New South Wales Environmental Protection Licence (EPL) number – 4062. In reference to condition L2.2 of EPL 4062;

- Solid particles for both ventilation points was below 1.1mg/Nm³.
- Carbon monoxide for both ventilation points was below 40mg/Nm³.
- Nitrogen oxides for both ventilation points was below 25mg/Nm³.
- VOCs as n-propane for both ventilation points was below 4mg/Nm³.

All test results are compliant.

7 ADDENDUM

7.1 Infrastructure Approval - EF20/104

Table 11: Condition A2.1 of Infrastructure Approval

Pollutant	Units of measure	Frequency ⁶	Method ¹	
Solid Particles	μg/m ³	Quarterly	TM15	
PM ₁₀	μg/m ³	Quarterly	OM-5	
PM 2.5 ⁵	$\mu g/m^3$	Quarterly	OM-5	
CO	mg/m ³	Continuous	CEM-4	
VOC	mg/m ³	Continuous	CEM-8	
Speciated VOC ³	mg/m ³	Annual	OM-2	
PAH ⁴	µg/m ³	Annual	OM-6	
Parameter	Units of measure	Frequency	Method ¹	
Flow rate	M ³ /s	Continuous	CEM-6	
Moisture	%	Continuous	TM-22	
Temperature	К	Continuous	TM-2	
Other	Units of measure	Frequency	Method ¹	
Sampling locations	NA	NA	TM-1	

Note:

NSW EPA, 2001, Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales Standards Australia, 2001, AS3580.9, 8-2001, Methods for the Sampling and Analysis of Ambient Air – Det

² Standards Australia, 2001, AS3580.9.8-2001, Methods for the Sampling and Analysis of Ambient Air – Determination of Suspended Particulate Matter – PM₁₀ Continuous Direct Mass Method using Tapered Element Oscillating Microbalance Analyser

³ Must include, but not limited to; Benzene, Toluene, Xylenes, 1,3-Butadiene, Formaldehyde and Acetaldehyde Must include, but not limited to: 16 USEPA priority PAHs, namely, Naphthalane, Phananthrane, Benz/alanthrane

⁴ Must include, but not limited to; 16 USEPA priority PAHs, namely; Naphthalene, Phenanthrene, Benz(a)anthracene, Benzo(a)pyrene, Acenapthylene, Anthracene, Chrysene, Indeno(1,2,3-cd)pyrene, Acenaphthene, Fluoranthene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene, Fluorene, Pyrene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene.

5 Appropriately modified to include size selective inlet for PM2.5 or as otherwise approved by the Director-General.

⁶ Frequency of monitoring can be varied with approval from the Director-General.

7.2 EPL 21374 Air Monitoring Requirements

7.3 Condition L2.2 of EPL 4602

L2.2 Air Concentration Limits

POINT 2,3

,					
Pollutant	Units of measure	100 percentile concentration limit	Reference conditions	Oxygen correction	Averaging period
Carbon monoxide	milligrams per cubic metre	40	Dry, 273K,101.3 kPa		1 hour
Nitrogen Oxides	milligrams per cubic metre	25	Dry, 273k, 101.3kPa		1 hour
Solid Particles	milligrams per cubic metre	1.1	Dry, 273k, 101.3kPa		1 hour, or the minimum sampling period specified
volatile organic compounds as n-propane equivalent	milligrams per cubic metre	4.0	Dry, 273k, 101.3kPa		1 hour

7.4 Condition M2.2 & 2.3 of EPL 4602

M2 Requirement to monitor concentration of pollutants discharged

- M2.1 For each monitoring/discharge point or utilisation area specified below (by a point number), the licensee must monitor (by sampling and obtaining results by analysis) the concentration of each pollutant specified in Column 1. The licensee must use the sampling method, units of measure, and sample at the frequency, specified opposite in the other columns:
- M2.2 Air Monitoring Requirements

POINT 1

Pollutant	Units of measure	Frequency	Sampling Method	
Carbon monoxide	parts per million	Continuous	CEM-4	

POINT 2,3

Licence - 4062

Pollutant	Units of measure	Frequency	Sampling Method	
Carbon monoxide	milligrams per cubic metre	Every 6 months	TM-32	

Environment Protection Authority - NSW Licence version date: 29-Mar-2022 Page 9 of 17

Section 55 Protection of the Environment Operations Act 1997

Environment Protection Licence

Nitrogen Oxides	milligrams per cubic metre	Every 6 months	TM-11
Solid Particles	milligrams per cubic metre	Every 6 months	TM-15
Speciated organic compounds	milligrams per cubic metre	Every 6 months	TM-34
volatile organic compounds as	milligrams per cubic metre	Every 6 months	TM-34
n-propane equivalent			

M2.3 For the purpose of the Table above, Speciated Organic Compounds must include, but are not limited to, Benzene, Toluene, Xylenes, 1,3-Butadiene, Formaldehyde and Acetaldehyde Note: The frequency of the monitoring will be reviewed in two years.

7.5 Sample Method Summaries

7.5.1 Velocity, Volume Flow Rate & Temperature (USEPA Method 2)

Gas velocity and volume flow rate were determined in accordance with USEPA Method 2 – Determination of stack gas velocity and volumetric flow rate (type-s pitot tube). Velocity profiles were obtained across the sampling location using a calibrated S-type pitot tube, a Testo digital manometer, a type K thermocouple, and a Fluke thermocouple indicator.

Positions for velocity pressure and temperature measurement were determined in accordance with AS4323.1. Gas velocity and volume flow rate was then calculated in accordance with USEPA Method 2.

7.5.2 Gas Molecular Weight (USEPA Method 3)

A gas sample is extracted from a stack by one of the following methods: (1) single-point, grab sampling; (2) single-point, integrated sampling; or (3) multi-point, integrated sampling. The gas sample is analysed for percent CO2 and percent O2.

7.5.3 Moisture Content (USEPA Method 4)

A measured volume of stack gas was bubbled through a series of chilled impingers each containing 100mls of water and then drawn through a silica gel tube in accordance with US EPA Method 4 - "Determination of Moisture Content in Stack Gases".

The total change in volume of water in the impingers and the weight change of the silica gel tube were used to calculate the percentage moisture in the stack.

7.5.4 Total Solid Particles

Monitoring for solid particles was conducted in accordance with Australian Standard 4323.2 - 1995 "Stationary Source Emissions, Method 2: Determination of Total Particulate Matter -Isokinetic Manual Sampling - Gravimetric Method".

Stack gas was withdrawn isokinetically through a nozzle, which had a sharp and tapered leading edge. Particulate matter was collected on a pre-weighed quartz filter located in a holder downstream of the nozzle. Gases were then conditioned (for removal of moisture) and finally metered for flow rate and sample volume.

The weight change of the filter was determined using an Ohaus electronic balance (with a current NATA endorsed certification), and this figure used to calculate the concentration of particulate matter.

7.5.5 Speciated VOCs – USEPA Method 18/USEPA TO-15

This method applies to ambient concentrations of VOCs above 0.5 ppbv and typically requires VOC enrichment by concentrating up to one litre of a sample volume.

TO-15 was developed for the sampling and the analysis of VOCs in ambient air. Samples are collected in a certified passivated steel canister that is evacuated to approximately -30 inches Mercury. Samples may be collected either as grab samples or as temporal samples, sampling times from less than one minute to greater than 24 hours, by using a flow restricting device.

The atmosphere is sampled by introduction of air into a specially prepared stainless-steel canister (Summa canister). A pump ventilated sampling line is used during sample collection to ensure sample from the source being tested is delivered undiluted to the canister. After the air sample is collected, the canister valve is closed, an identification tag is attached to the canister, and the canister is transported to the laboratory for analysis.

The sample is released by thermal desorption and carried onto a gas chromatographic column for separation and analysis via a high-resolution gas chromatograph (GC) coupled to a mass spectrometer.

7.5.6 Speciated VOCs – USEPA Method 18 (Aldehydes & Ketones)

Sampling and analysis for formaldehyde and acetaldehyde (Ethanal) was conducted using aldehydes & ketones DNPH sorbent tubes, the USEPA Method 18 adsorbent tube approach was used as a guide. A measured volume of stack gas was drawn through a DNPH adsorption tube, trapping aldehydes & ketone present in the gas. Samples were analysed using Carbonyls determined by derivatisation with DNPH and subsequent HPLC analysis.